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Veri�cation and validation of impinging round jet simulations
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SUMMARY

This paper illustrates the use of an adaptive �nite element method as a means of achieving veri�cation
of codes and simulations of impinging round jets, that is obtaining numerical predictions with controlled
accuracy. Validation of these grid-independent solution is then performed by comparing predictions to
measurements. We adopt the standard and accepted de�nitions of veri�cation and validation (Technical
Report AIAA-G-077-1998, American Institute of Aeronautics and Astronautics, 1998; Veri�cation and
Validation in Computational Science and Engineering. Hermosa Publishers: Albuquerque, NM, 1998).
Mesh adaptation is used to perform the systematic and rigorous grid re�nement studies required for
both veri�cation and validation in CFD. This ensures that discrepancies observed between predictions
and measurements are due to de�ciencies in the mathematical model of the �ow. Issues in veri�cation
and validation are discussed. The paper presents an example of code veri�cation by the method of
manufactured solution. Examples of successful and unsuccessful validation for laminar and turbulent
impinging jets show that agreement with experiments is achieved only with a good mathematical model
of the �ow physics combined with accurate numerical solution of the di�erential equations. The paper
emphasizes good CFD practice to systematically achieve veri�cation so that validation studies are always
performed on solid grounds. Copyright ? 2004 John Wiley & Sons, Ltd.
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INTRODUCTION

Impinging round jets are widely used for industrial applications. They produce very high heat
transfer coe�cients and provide a powerful approach for cooling, drying and heating opera-
tions. Many other areas such as jet painting and rocket launching also deal with such �ows.
Turbulent jets have received more attention than laminar ones since they are more frequently
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Table I. Flow over a backward facing step.

Reference Turbulence model L=H

Kim et al. experiment 7± 0:5
Mansour and Morel k–� 5.2
Pollard k–� 5.88
Rodi et al. k–� 5.8
Launder et al. ASM 6.9
Abdelmeguid et al. k–� 6
Demirdzic et al. modi�ed k–� 6.2
Donaldson et al. RSM 6.1
Ilegbusi and Spalding modi�ed k–� 7.2
Nallasamy and Chen k–� 5.8
Syed et al. k–� 5.8
Ilinca et al. k–� 6.2

encountered. Both will be considered here. However, the emphasis is on the hydrodynamics
of the �ow rather than on heat transfer aspects.
The study of impinging �ows is particularly interesting because of the diversity of behaviour

in the di�erent parts of the �ow: free-jet, impingement and wall-jet regions. The impingement
region is of particular interest in the validation of turbulence models which are usually better
suited for �ows parallel to walls.
As already reported [1–4], much scatter is observed in results obtained by various authors.

There are many possible causes to this scatter: numerical schemes, mathematical models, mesh,
boundary conditions, wall treatment, etc. The objective of the present paper is to control the
numerical precision of the solution so as to eliminate the mesh as a source of error. Once
the accuracy is certi�ed, validation and comparison of models may be performed on a more
solid basis. Under such circumstances, the inaccuracies in predictions are due to turbulence
modelling errors.
Such issues are of concern to a broad spectrum of �uid dynamics problems and have been

observed in many other instances. In fact, accurate and reliable prediction of turbulent �ows
has been the subject of much research by the CFD community over the past few years. A
review of the literature reveals that in many cases, for a given �ow, predictions by di�erent
authors show an unacceptable amount of scatter. At times this gets even more disconcerting
given that people using similar models and numerical algorithms produce vastly di�ering pre-
dictions. Table I presents the predicted length of the recirculation zone for turbulent �ow over
a backward facing step. All authors use a variant of the k–� model with wall functions and
a TEACH type solution algorithm [5]. The only exceptions are the predictions of Donaldson,
who used a Reynolds Stress Model, and that of Ilinca et al. obtained with an adaptive �nite
element method. The only possible causes for the di�erences observed between authors are the
meshes used and details of the computer implementation of the algorithm. The scatter between
predictions is even worse for turbulent heat transfer predictions. Table II presents the maximum
Nusselt number downstream of a sudden pipe expansion. These results were taken from Laun-
der [3]. Hutton et al. collected the original data [6]. The largest predicted value is �ve times
bigger than the lowest value. The lowest predicted value is in error by 50% while the highest
prediction is in error by more than 100%. According to Launder the main source of error is
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Table II. Maximum Nusselt number downstream of a sudden pipe expansion.

Author Numax

Numerical #1 1660
Numerical #2 375
Numerical #3 1205
Numerical #4 1330
Numerical #5 915
Numerical #6 2036
Numerical #7 574
Numerical #8 1440
Numerical #9 921
Numerical #10 943
Numerical #11 975
Experimental 932

the near wall model. However, mesh size and arti�cial di�usion due to upwind discretization
of convective terms provide an uncontrolled and often non-negligible source of error.
While turbulence modelling issues are still a topic of hot debate, numerical and discretization

issues can now be addressed in a rigorous and systematic manner so as to minimize their
impact on the uncertainty of predictions. Adaptive methods are a powerful tool to control
numerical errors. It is now possible to obtain ‘numerically exact’ solutions to the di�erential
equations so that mathematical modelling issues can be studied and evaluated with con�dence.
Roache proposes a two-step approach in order to distinguish mathematical modelling errors

and numerical errors [7]. The �rst step is called veri�cation. Simply stated, it provides an
answer to the question: Are we solving the equations right? Questions of numerical accuracy
are at the heart of the veri�cation process. The second step is called validation and provides
answers to the question: Are we solving the right equations for this problem? The key question
in validation is one of the suitability of the mathematical model to accurately represent the
physical process of interest.
This paper proposes an adaptive �nite element method as an e�cient tool for performing

both veri�cation and validation. This methodology has already proved its ability to produce
high quality and very accurate solutions to a wide variety of problems. Initial e�orts were
focused on laminar isothermal �ows [8, 9], turbulent incompressible �ows [10–12], and com-
pressible �ows [13]. Applications to laminar heat transfer have also been presented [14, 15],
including conjugate e�ects [16] and compressibility [17]. Applications to turbulent heat trans-
fer may be found in References [18–20]. Using the adaptive methodology, the paper presents
examples of code veri�cation by the method of manufactured solution. Examples of success-
ful and unsuccessful validation show that agreement with experiments is achieved only with
a good mathematical model of �ow physics combined with accurate numerical solution of
the di�erential equations. The paper emphasizes good CFD practice to systematically achieve
veri�cation so that validation studies are always performed on solid grounds.
Adaptive methods provide a powerful approach to handle �ows with such a spectrum of

behaviours within the �ow �eld. Automatic grid point clustering in regions of rapid varia-
tion of the solution ensures accurate resolution in all parts of the �ow. Mesh adaptation can
yield ‘numerically exact’ (grid independent) solutions. The error estimator allows for quality
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control of the solution. The adaptive strategy provides a simple means of quantifying the con-
vergence of an adaptive grid re�nement study. Our previous work on adaptive �nite element
methods has described both veri�cation and validation computations for a variety of problems
of practical interest [1, 10–12, 18].
The paper is organized as follows. The �rst section contains de�nitions of veri�cation and

validation to provide context. Then the governing equations are presented. The Navier–Stokes
equations and standard k–� model, coupled with wall functions, are used. We also present
the logarithmic form used for preserving positivity of turbulence variables. The �nite element
formulation is also discussed. The next section brie�y describes the adaptive methodology and
the error estimator. Next, we present some examples of code veri�cation using the method of
manufactured solutions proposed by Roache [7]. Finally, the adaptive methodology is applied
to a variety of laminar and turbulent impinging jets for which simulation veri�cation and
validation are performed. The paper ends with conclusions.

DEFINITIONS

First and foremost we must make the essential distinction between veri�cation and validation.
In a common English thesaurus, veri�cation and validation are synonymous. However, in CFD
these two words have acquired a generally accepted technical meaning which is provided in
the speci�c technical context of CFD. The same words can have di�erent technical mean-
ings in di�erent contexts. We follow accepted de�nitions [7, 21–23] and adopt the succinct
description of veri�cation as solving the equations right, and of validation as solving the
right equations.
For Veri�cation, the code author de�nes precisely what partial di�erential equations and

boundary conditions are being solved and convincingly demonstrates that they are solved
correctly (i.e. with some order of accuracy) and always consistently so that, as some measure
of the mesh size tends to zero, the code produces a solution to the continuum equations.
Whether or not those equations and that solution bear any relation to a physical problem of
interest to the code users is the subject of validation. Thus in a meaningful but scrupulous
sense, one cannot validate a ‘code’. The best one can do is validate a simulation or perhaps
a range of calculations for a well de�ned class of problems.
Another way do make the distinction between veri�cation and validation is to speak of

numerical errors versus conceptual modelling errors. An example is the assumption of in-
compressibility. For instance, dynamic stall of helicopter rotor blades entails compressibility
e�ects at surprisingly low free-stream Mach number. Results from an incompressible �ow
code will likely not agree with experimental data. However, one cannot claim that code failed
veri�cation because it was applied to a compressible �ow. In this case, the lack of agreement
with data is not a code problem. It is a modelling problem: the user chose the wrong model
for his �ow.
Another way of distinguishing veri�cation from validation is to follow the classical dis-

tinction between mathematics and engineering science. Veri�cation is strictly an activity in
the mathematics of numerical analysis. It answers the question Are we doing good numeri-
cal analysis to solve the di�erential equations at hand? Validation is essentially and strictly
an activity in engineering science. It answers the question Are we doing good engineering
modelling for the problem of interest?
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This distinction is further enhanced by looking at the IEEE de�nition of code veri�cation
[24]: ‘Formal proof of program correctness’. We agree with Oberkampf’s evaluation of
this terse de�nition [25]: ‘Although brief, this de�nition brings unprecedented clarity to the
meaning of the term, and it adds a new perspective to the issue. Speci�cally, this de�nition
bluntly requires correctness or veracity of prediction, without bringing in supportive topics
as what is being predicted or how it is done’. While more general, the IEEE de�nition
is compatible with the one used here, and is also compatible with the distinction between
Veri�cation and Validation. That is, program correctness for a PDE code would naturally
include solving the equations right, and of course a de�nition of what those continuum
equations are, without getting into the question of whether certain problems are appropriate
for those equations and that code, i.e. Validation. In other words Veri�cation and Validation
are separate steps.
Questions of numerical accuracy are at the heart of the Veri�cation process. Thus, both

the code and individual simulations must be veri�ed. Veri�cation of a code involves error
estimation from a known solution, whereas veri�cation of a speci�c calculation involves error
estimation or banding to ensure that problem speci�cation does not prevent the code from
delivering the expected accuracy [7]. See Roache for cases where a veri�ed code may deliver
non-veri�ed simulations [7].
The key question in validation is centered on the suitability of the mathematical model

to accurately represent the physical process of interest. Predictions are compared to experi-
ments to determine the degree of accuracy to which the model represents reality. Again, this
is matter of physics and engineering, not of mathematics. Note that any validation exercise
looses its signi�cance and credibility if prior veri�cations (of the code and the calculations)
are not performed. The rule is: verify �rst, validate next. Unfortunately, violations to this
rule are frequently encountered in the literature. Roache recommends systematic grid re�ne-
ment studies for structured non-adaptive meshes combined with Richardson extrapolation as
a means of performing veri�cation studies. In this paper, adaptive remeshing is shown to be
a cost-e�ective alternative that automates the tedious process of manual generation of �ner
meshes.
To many people, Validation simply consists in comparing predictions to experimental mea-

surements. In practice, Validation is a more di�cult exercise than one would expect. One
must start with good CFD (veri�ed) predictions and compare them to good experimental
data. The �rst di�culty to overcome is best described by the following saying in the aerody-
namics community: ‘No one believes the CFD prediction except the one who performed the
calculation, and every one believes the experimental data except the one who performed the
experiment’. Second, good data is di�cult to obtain due to experimental errors. For instance
wind tunnels su�er from �ow angularity and blockage e�ects which are further complicated
because they vary with angle of attack. Furthermore, experimental data must be interpreted
with care because of the possible sources of errors: calibration errors, data acquisition errors,
data reduction errors, test technique errors etc. [26].
Most experiments were never designed for CFD validation. As a result some data critical to

CFD is often missing: geometry, boundary conditions, initial conditions etc. [7]. Aeschliman
et al. also report that ‘as one progresses down the list to more di�cult quantities for CFD
to predict, the experimental uncertainty generally increases also’. This can result in false
invalidation (failed validation) or false validation. Wilcox [27] describes a case where the
data were incomplete and lead to a false invalidation. Aeschliman et al. describe a case for
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which both the CFD and experiments contained serious errors, yet agreed extremely well with
each other!
The �ow models and the experimental data presented in the paper were selected to illustrate

a range of situations. All involve veri�ed computations. Examples show that a veri�ed code
may lead to successful validation for one �ow and failed validation for another. This highlight
the delicate and di�cult nature of veri�cation and validation.

MODELLING OF THE PROBLEM

Flow equations

For laminar �ow problems we use the Navier–Stokes equations for an incompressible �uid:

�u · ∇u=−∇p+∇ · [�(∇u+ (∇u)T)] (1)

∇ · u=0 (2)

where � is the density, u is the velocity, p is the pressure and � is the viscosity.
Incompressible turbulent �ows are modelled by the time-averaged momentum and continuity

equations.

�u · ∇u=−∇p+ f +∇ · [(�+ �t)(∇u + (∇u)T)] (3)

∇ · u=0 (4)

where � is the density, u is the velocity, p is the pressure, � is the viscosity, �t the eddy
viscosity and f is a body force. The eddy viscosity �T is computed using the standard k–�
turbulence model.

The standard k–� model of turbulence

The eddy viscosity is expressed in terms of two turbulence variables, the turbulence kinetic
energy k and its rate of dissipation �:

�t =�C�
k2

�

The mathematical system is closed by using the standard k–� model of turbulence [28]. The
transport equations for k and � are written in a block-triangular form [10]:

�u · ∇k=∇ ·
[(
�+

�t
�k

)
∇k

]
+ �tP(u)− �2C� k

2

�t
+ qk

and

�u · ∇�=∇ ·
[(
�+

�t
��

)
∇�

]
+ �C1C�kP(u)− C2� �

2

k
+ q�
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Table III. Constants for the k–� model.

C� C1 C2 �k ��

0.09 1.44 1.92 1.0 1.3

where the production of turbulence P is de�ned as

P=∇u : (∇u + (∇u)T)

The constants C1, C2, C�, �k , and �� are set to the values recommended by Launder and
Spalding [28] and are given in Table III. Finally, qk and q� are arti�cial source terms used
for code veri�cation.

Logarithmic form of the turbulence equations

While mathematically correct, the turbulence equations may cause numerical di�culties. For
example, the eddy viscosity may become negative if � becomes negative. Catastrophic break-
down of the solver usually follows such an event. In order to prevent this from happening,
the logarithmic form of these equations [29, 30] is used. This amounts to the following simple
change of dependent variables:

K= ln(k) and E= ln(�)

which leaves the turbulence model unchanged.
The transport equations for the logarithmic variables become:

�u · ∇K=∇ ·
[(
�+

�t
�k

)
∇K

]
+

(
�+

�t
�k

)
∇K · ∇K+ �te−KP − �2C� e

K

�t
+ qK (5)

�u · ∇E=∇ ·
[(
�+

�t
��

)
∇E

]
+
(
�+

�t
��

)
∇E · ∇E+ �C1C�eK−EP − C2�eE−K + qE

(6)

Note that the equations for logarithmic variables are equivalent to the original equations of
the turbulence model. Only the computational variables are di�erent. Hence, the turbulence
model is unchanged. The eddy viscosity is now computed in the following manner:

�t =�C�e2K−E

The TKE and its dissipation are recovered by taking the exponential of computational vari-
ables. Hence, k, � and �T remain positive throughout the domain and during the course of
the iterations.
This procedure o�ers additional advantages. Logarithmic variables usually vary more slowly

than k and � and the ratio of the extreme values is smaller. This makes it possible to obtain
solutions on very coarse meshes. The accuracy of the prediction of �T is greatly improved
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so that the �ow �eld prediction is also more accurate. Finally, improved solution accuracy is
also obtained in regions of low turbulence. See Ilinca et al. [11] for details.

Wall boundary conditions

The standard k–� turbulence model is not valid when the turbulent Reynolds number is low.
The near-wall region is such an instance. The strategy adopted here uses wall functions which
describe the solution near the wall. We use the same wall functions described in a previous
paper [18]. They involve two velocity scales, u� (the friction velocity) and u∗ (a velocity
scale based on the TKE):

u∗=C1=4� k
1=2
w

where the subscript w stands for wall value (in fact, the value at the boundary of the numerical
domain). The dimensionless distance to the wall y+ and tangential velocity u+ are given by

y+ =
�yu∗
�

u+ =
u
u�

where y is the distance normal to the wall and u is the tangential velocity. The universal
velocity pro�le is given by

u+ = y+ for y+¡y+c

u+ =
1
�
ln(Ey+) for y+ ¿ y+c

where � is the Karman constant and E a roughness parameter. For smooth walls we take
�=0:42 and E=9:0. The corresponding boundary conditions for k, � and the momentum
equations, applied at a distance d to the wall, are:

@k
@n
=0

�w =
u3∗
�d

�w = �u�u∗

unormal = 0

Finite element solver

The Navier–Stokes equations are solved by a Galerkin-type a �nite element method [11, 12].
The equations are multiplied by a test function and integrated over the domain. Integration by
parts of di�usion terms and pressure gradients leads to the Galerkin variational formulation.
The equations are discretized using the Crouzeix–Raviart seven-node triangular element [31].
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It uses an enriched quadratic velocity �eld and a linear discontinuous pressure. A quadratic
interpolant is used for turbulence variables. Details are provided in Reference [10]. For highly
convective �ows, as in the case of turbulent �ows, stabilized or upwind discretization of,
Upwind, SUPG or GLS type are used. See References [16, 19] for details. For laminar �ows
a fully coupled formulation of the momentum and continuity equations is adopted. For tur-
bulent �ows the numerical solution algorithm proceeds in the following partly segregated
manner. The Navier–Stokes and continuity equations are solved for a given �eld of �T. The
K and E equations are then solved sequentially. Sub-iterations on the turbulence equations
accelerate the overall convergence of the process. This loop is repeated until convergence is
achieved.

ADAPTIVE METHODOLOGY

The mesh plays a key role in the accuracy of numerical predictions. It must be �ne in regions
of rapid variation of the solution. When used with care, adaptive methods can be a useful
tool to obtain grid independent or ‘numerically exact’ solutions. Obviously they cannot be
used as black boxes.
The present work uses the local least-squares projection error estimator described by

Zienkiewicz and Zhu [32, 33]. Details of the method may be found in References [10, 29, 34].
An important issue in the present study is the fact that several dependent variables contribute
to the error in the solution. To account for multiple sources of error, an error estimate is
computed for each dependent variable: velocity, pressure, turbulence variables, and the eddy
viscosity. Estimating the error in the eddy viscosity turns out to be critical for two reasons.
First, smooth �elds of k and � can result in sharp fronts in the eddy viscosity. Second, the
eddy viscosity is the only mechanism in two-equation models for transfer of momentum and
turbulence by turbulent �uctuations.
The error estimates provide the information required to generate a new and improved mesh.

The principle of equidistribution of the error is combined to the asymptotic rate of convergence
of the �nite element method to determine the element size distribution for the improved
mesh. Such a formula is called a transition operator. We use the operator formulated by H�etu
[10, 11, 35]. The strategy attempts to reduce the global norm of the error by a factor � between
each adaptive cycle. Note that the transition operator is applied to each dependent variable
separately to derive the appropriate mesh size for each variable including the eddy viscosity.
The minimum mesh size is retained to generate the new mesh. This approach guarantees
accuracy improvements for all variables.

VERIFICATION

This section presents examples of veri�cation of the code implementing the above described
adaptive �nite element method. We use the method of manufactured solutions proposed by
Roache [7]. The availability of an exact solution provides a rigorous framework to assess the
performance and accuracy of both the �ow solver and the adaptive methodology.
The �rst example problem considered mimics an incompressible laminar round jet impinging

on a �at plate. Figure 1 illustrates the geometry for this problem. The curved boundary
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Figure 1. Geometry for the analytical jet.

correspond to a streamline where the velocity vanishes. The exact solution is given by

u=100x2(e−x
2r2 − e−0:01)

v=−100xr(e−x2r2 − e−0:01)

p=
1

1 + 1000(r2 + x2)

These expressions are substituted into the Navier–Stokes equations to determine the appro-
priate source term f in the momentum equations. Essential boundary conditions are applied
everywhere and we set Re=50.
The adaptive strategy was set to reduce the error by a factor 2 between each cycle. Ten

cycles of mesh adaptation were performed. Figure 2 shows the initial very coarse mesh and
the mesh obtained after seven cycles of adaptation (4726 nodes and 2257 elements). The �nal
mesh is not shown. It has so many nodes and elements that it results in a nearly solid black
image that provides no useful information. The initial mesh is very coarse and contains only
one element in the cross-section of the �ow. Note the mesh re�nement in the stagnation point
area and along the solid wall on the right hand side of the �gure.
Figure 3 shows the evolution of the velocity and pressure errors during the mesh re�nement

process. As can be seen, the true error and its estimate decrease at each adaptive cycle
indicating that the numerical predictions converge to the true solution. Furthermore, as can
be seen, the error estimates get closer to the true error indicating that the error estimates
converges to the true error. The error estimator exhibits asymptotic exactness. Figure 3 also
plots the evolution of the e�ciency indices for both velocity and pressure. The e�ciency index
is de�ned as the ratio of the estimator to the true error. As can be seen both indices converge
to one with mesh adaptation, thus con�rming the asymptotic exactness of the error estimators.
Finally, the rate at which the errors decrease is in agreement with a priori estimates of the
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Figure 2. Meshes for the con�ned jet: (a) initial mesh and (b) �nal mesh.

Figure 3. Convergence for manufactured laminar jet: (a) velocity error, (b) e�ciency index for velocity,
(c) pressure error and (d) e�ciency index for pressure.
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Figure 4. Skin friction coe�cient distribution for the analytical jet.

convergence rates. The code is thus veri�ed in the sense of Roache [7] for the �ow model
used in this case.
Figure 4 provides another visual representation of global convergence and high accuracy.

The distribution of the skin friction coe�cient along the plate is plotted (Cf= �w=(0:5�U 2)
= (−2=Re)@v=@x). Here again we can see that the numerical solution converges to the exact
solution as the mesh is re�ned. Grid independence is achieved. Note that this problem is not
especially demanding from a numerical standpoint.
Similar veri�cations were carried out for the Upwind, SUPG and GLS �nite element formu-

lations. Similar convergence behaviours were observed. Hence, these results are not reported.
The second example of code veri�cation is taken from Turgeon’s thesis and mimics a free

turbulent round jet [34]. The manufactured solution is taken to be:

u=
3
8�

c
�0x

1
(1 + (1=4)	2)2

v=
1
4

√
3
�

√
c
x

	− (1=4)	3
(1 + (1=4)	2)2

k =4× 10−3 e
−	3=5

x2
+ 10−4

�T = 5× 10−4e−	3=5 + 5× 10−5

�=
�C�k2

�T

where

	=
1
4

√
3
�

√
c
�0
r
x
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Table IV. Meshes for analytical turbulent jet [34].

Cycle Number of nodes Number of elements

0 348 155
1 658 311
2 1572 763
3 3693 1812
4 9141 4520

Table V. Velocity error for turbulent jet [34].

Cycle Exact error Error estimate E�ciency index (%)

0 4:084× 10−2 4:029× 10−2 98.7
1 2:659× 10−2 2:173× 10−2 81.7
2 1:147× 10−2 9:520× 10−3 83.0
3 5:691× 10−3 5:024× 10−3 88.3
4 2:035× 10−3 1:848× 10−3 90.8

Table VI. Error for K for turbulent jet [34].

Cycle Exact error Error estimate E�ciency index (%)

0 1:250× 100 1:175× 100 94.0
1 6:344× 10−1 7:181× 10−1 113.2
2 2:573× 10−1 2:567× 10−1 99.8
3 8:896× 10−2 8:642× 10−2 97.2
4 3:166× 10−2 3:085× 10−2 97.4

Table VII. Error for �T for turbulent jet [34].

Cycle Exact error Error estimate E�ciency index (%)

0 1:075× 10−4 9:614× 10−5 89.4
1 4:099× 10−5 4:035× 10−5 98.4
2 1:195× 10−5 1:024× 10−5 85.7
3 4:435× 10−6 3:819× 10−6 86.1
4 1:592× 10−6 1:477× 10−6 92.8

Table IV provides information of the sequence of adaptive meshes. Tables V–VII present
the trajectory of the error on typical variables. In these tables, the e�ciency index is also
de�ned as the ratio of the estimated error to the true (exact) error. Here again, the solution
clearly converges to the exact solution of the di�erential equations and the error estimator
performs well. The code is veri�ed for turbulent �ows in the sense of Roache [7].
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The adaptive methodology is thus a powerful tool to verify a code. The mesh re�nement
studies are straight forward tasks as they are a natural component of the adaptive methodology.
Finally, the process leads to highly accurate solutions.

APPLICATIONS

The adaptive methodology is now applied to laminar and turbulent impinging jets. Because
the code and adaptive methodology have been rigorously veri�ed, veri�cation and validation
of simulations for speci�c practical cases may be performed with con�dence.
The �rst example involves a rather simple laminar �ow. Yet it highlights some of the

di�culties that arise when one uses old data that were never intended for validation pur-
pose. While the Navier–Stokes equations are an exact model for laminar �ows, the numerical
prediction may not agree well with measurements due to some inherent problem with the
experimental technique as is the case here.
This is followed by simulation of a round turbulent impinging jet. We have selected the k–�

model of turbulence with wall functions for several reasons. First, this model is very popular
and is o�ered by all CFD vendors. Hence, there is a high probability that users will select it for
their simulations. Second, wall functions result in very cost-e�ective simulations as they avoid
the very �ne meshes and high computational requirements of low Reynolds number turbulence
models. Finally, there is renewed interest in wall functions development for complex industrial
problems [36]. In fact, some of them have found their way in commercial CFD software and
are often the recommended approach [37]. Thus, it appears reasonable and useful to illustrate
Veri�cation and Validation concepts on the standard k–� model.

Laminar jet

The �rst application is a laminar impinging jet. The con�guration corresponds to the ex-
perimental conditions of Scholtz and Trass [38]. The geometry and boundary conditions are
shown in Figures 5 and 6. The Reynolds number is based on the inlet mean velocity and
tube diameter. Data is available for three values of the Reynolds number: 750, 950 and 1744.
The corresponding values of the distance L between the jet lips and the wall are 1d, 2d and
4d. The computational extends 20d from the axis in the radial direction and 3d upstream of
the jet lips. A parabolic (fully developed) velocity pro�le is assumed at the inlet. A no-slip
condition is applied at all solid walls. Symmetry is enforced along the jet axis, Neumann
(traction free) conditions are used on the entrainment and out�ow boundary segments.
Veri�cation and validation studies are performed for three �nite element formulations: stan-

dard Galerkin formulation, the streamline upwind formulation (SU or upwind) of Hughes and
Brooks [39] and the SUPG formulation of Brooks and Hughes [40]. The SU (upwind) formu-
lation applies the upwind test function to the convective term only while the SUPG applies
it to all terms in the di�erential equations.
The above adaptive methodology was applied to the three jet cases. Results are presented

in turn for the three values of the Reynolds number.
Typical initial and �nal meshes for the �rst jet case (Re=750, L=d=1) are shown in

Figure 7. Obviously, each variational formulation will lead to slightly di�erent meshes. The
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Figure 5. Geometry for the impinging laminar jet.

Figure 6. Boundary conditions for the laminar jet.
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Figure 7. Initial and �nal meshes for Re=750.

important point to note is that the same answer is obtained if one performs enough cycles of
mesh adaptation.
Figure 8 presents adaptive grid convergence of the pressure coe�cient along the �at plate

for three variational formulations (Galerkin, SUPG and upwind). All formulations lead to
grid converged results. Note however, that the Upwind formulation requires more cycles of
adaptation and �ner meshes than the other formulations. The important point to note is that
formulations converge essentially to the same answer if the mesh is �ne enough. Hence, all
three simulations are veri�ed in the sense of Roache [7].
Figure 9 compare all �ne mesh predictions with the experimental data of Scholtz and Trass

[38]. Agreement is excellent for the Galerkin and SUPG computation and fair to good for the
Upwind simulation. The agreement is su�ciently good to claim that the three simulations are
validated in the sense of Roache [7].
The methodology is now applied to the second jet con�guration (Re=950, L=d=2). Typ-

ical initial and �nal meshes are shown in Figure 10. Results are reported for the Galerkin
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Figure 8. Grid convergence of Cp for laminar jet at Re=750: (a) Galerkin, (b) SUPG and (c) upwind.

Figure 9. Validation data of Cp for laminar jet at Re=750.
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Figure 10. Initial and �nal meshes for Re=950.

and Upwind formulation only. Convergence di�culties were encountered with the SUPG
formulation.
Figure 11 presents adaptive grid convergence of the friction coe�cient along the �at plate

for two variational formulations (Galerkin and upwind). Both formulations lead to grid in-
dependent distributions. Hence these computations of the skin friction coe�cient are veri�ed
in the sense of Roache [7]. Furthermore, validation of predictions is achieved as evidenced
by the excellent agreement of grid converged predictions with the data of Deshpande and
Vaishnav [41] (see Figure 12).
Finally, the methodology applied to the highest Reyolds number jet con�guration (Re=1744,

L=d=4). Typical initial and �nal meshes are shown in Figure 13. Results are reported for the
SUPG and upwind formulation only. Convergence di�culties were again encountered with
the Galerkin formulation.
Figure 14 presents adaptive grid convergence of the pressure coe�cient along the �at plat

for two variational formulations (SUPG and upwind). In this case, the Reynolds number is so
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Figure 11. Grid convergence of Cf for laminar jet at Re=950: (a) Galerkin and (b) upwind.

Figure 12. Validation data of Cf for laminar jet at Re=950.

high that convergence of the Galerkin method could not be achieved. Both formulations lead
to grid independent distributions. Hence these computations of the skin friction coe�cient are
also veri�ed in the sense of Roache [7]. Furthermore, validation of predictions is achieved as
evidenced by the excellent agreement of grid converged predictions with the data of Scholtz
and Trass [38] (see Figure 15).
However, in all cases small discrepancies are observed between predictions and data. As

explained by Roache, this is expected as the data is old and was not intended for validation
purpose [7].

Turbulent jet

The second application is a turbulent round impinging jet [2]. It is an example for which
the simulation, using the k–� model with wall functions, is veri�ed (grid convergence is
observed) but not validated (predictions do not match the experiments). It has long been
known that the k–� model with wall functions is a very poor choice for this problem. We
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Figure 13. Initial and �nal meshes for Re=1744.

Figure 14. Grid convergence of Cp for laminar jet at Re=950: (a) SUPG and (b) upwind.

still choose to include this example because it illustrates good CFD practice for producing
reliable veri�cation and validation (invalidation in this case).
The geometry is similar to that used for the laminar case. However the points (−3; 20)

and (2,20) of the geometry in Figure 5 are changed to (−2; 5) and (2,5) to provide better
grid resolution near the jet lips and the stagnation point. Initial simulations with the radial
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Figure 15. Validation data of Cp for laminar jet at Re=1744.

Figure 16. Final mesh for the turbulent jet.

outer boundary located at r=d=20 revealed that most of the solution variations occurred
within a radial distance of r=d65. The Reynolds number based on the inlet bulk velocity U
and pipe diameter d is 23,000. The plate is located at a distance L=2d from the jet lips.
Fully developed conditions, obtained in a separate computation, are imposed at the inlet. In
this case the lip thickness is taken as t=d=0:132 from the experimental con�guration. The
experimental data used for comparisons are those provided at the 15th Meeting of the IAHR
Working Group [2].
The �nal mesh is shown in Figure 16. As can be seen the mesh is re�ned where the solution

gradients are large. Notice the re�nement along the wall, in the shear layer emanating for the
lips, and in the regions where the jet turns into a radial wall jet.

Copyright ? 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2004; 44:737–763



758 D. PELLETIER, �E. TURGEON AND D. TREMBLAY

Figure 17. Skin friction distribution for the turbulent jet.

Figure 18. Turbulent jet: uz at r=d=0:5.

Figure 17 presents the distribution of the skin friction coe�cient on the plate. No experi-
mental data are available but this allows a veri�cation of the accuracy and grid convergence
of a derived quantity. Skin friction was computed in two di�erent ways: by direct di�erentia-
tion of the �nite element solution (‘der.’ on the �gure) or by using the wall functions (‘w.f.’)
which rely only on values of v and k and not their derivatives. As can be seen, the recovery
through wall functions is smoother and converges more rapidly towards its asymptotic limit.
This is not surprising since it does not involve derivatives of the solution which are of lower
accuracy. This fast convergence toward the exact solution of the problem modelled provides
the solution to which the performance of the derivatives may be compared. The Cf computed
from the derivatives is poor on the �rst meshes but clearly converges to the limit provided by
the wall function recovery. The derivatives are not completely ‘grid converged’ but the bene�ts
of adaptivity are obvious. This problem is much more demanding than its laminar counterpart.
These results indicate that skin friction predictions are veri�ed in the sense of Roache [7].
Figures 18–20 present distributions of uz (the velocity in the direction z normal to the

plate), v and k at r=d=0:5. Similar results extracted at r=d=1:0 are shown in Figures 21–23.
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Figure 19. Turbulent jet: v at r=d=0:5.

Figure 20. Turbulent jet: k at r=d=0:5.

Figure 21. Turbulent jet: uz at r=d=1:0.
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Figure 22. Turbulent jet: v at r=d=1:0.

Figure 23. Turbulent jet: k at r=d=1:0.

The near perfect overlay of predictions on meshes from adaptive cycles 4 and 5 indicates
grid convergence of prediction and veri�cation of the simulation in the sense of Roache [7].
Velocity predictions are at best fair, with signi�cant discrepancies from experimental data. The
predictions of the turbulent kinetic energy is nearly one order of magnitude too high! Note
that the numerical solutions obtained are similar to those presented by other authors [2]. Much
scatter was observed between authors. Furthermore, the k–� turbulence model was the worst
model in terms of predictive capability for k. The most important thing to observe here is the
grid convergence obtained with the adaptive process. It yields grid independent solutions for all
variables. The di�erences between predictions from meshes 4 and 5 are so small that we can
conclude we have obtained the ‘numerically exact solutions’. Improvements of predictions
(compared to experimental data) are now a matter of turbulence modelling. However, the
veri�cation step ensures that the discrepancies are due to the mathematical model and not
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the numerical scheme. Clearly, the k–� turbulence model combined with wall functions is
a poor mathematical representation of this complex �ow. This striking example is presented
intentionally to illustrate the di�erences between veri�cation and validation and to emphasize
the importance of preliminary veri�cations before drawing conclusions about the validity of
a model. More details on this problem may be found in Reference [20].

CONCLUSIONS

An adaptive �nite element methodology was shown to be a powerful tool to perform grid re-
�nement studies. Examples reported show that the methodology can treat round incompressible
laminar and turbulent jets impinging on a �at plate. With adaptivity, mesh generation is no
longer a deterrent to performing grid re�nement studies required for performing the rigorous
veri�cation of codes and simulations. Veri�cation and validation become a fairly simple and
straightforward process. Asymptotic exactness of the error estimators provides for quantitative
estimates of the errors that are reliable enough to assess the accuracy of numerical predictions.
This makes it possible to ensure that numerical errors are small enough so that veri�cation
can be performed with con�dence. Examples presented show that adaptivity is no substitute
for validation. It only makes the process simpler and easier to perform.

NOMENCLATURE

C�1, C�2, C�, �k , �� k–� model constants
d pipe diameter
f body force
k turbulence kinetic energy (TKE)
K natural logarithm of k
L recirculation length
p pressure
Re Reynolds number
u velocity
u; v velocity components
U reference velocity
x; r cylindrical co-ordinates
� turbulence dissipation rate
E natural logarithm of �
� viscosity
� density

Subscripts

T turbulent
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